Time Stamp Algorithms for Runtime Parallelization of DOACROSS Loops with Dynamic Dependences

  • Authors:
  • Cheng-Zhong Xu;Vipin Chaudhary

  • Affiliations:
  • Wayne State Univ., Detroit, MI;Wayne State Univ., Detroit, MI

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a time stamp algorithm for runtime parallelization of general DOACROSS loops that have indirect access patterns. The algorithm follows the INSPECTOR/EXECUTOR scheme and exploits parallelism at a fine-grained memory reference level. It features a parallel inspector and improves upon previous algorithms of the same generality by exploiting parallelism among consecutive reads of the same memory element. Two variants of the algorithm are considered: One allows partially concurrent reads (PCR) and the other allows fully concurrent reads (FCR). Analyses of their time complexities derive a necessary condition with respect to the iteration workload for runtime parallelization. Experimental results for a Gaussian elimination loop, as well as an extensive set of synthetic loops on a 12-way SMP server, show that the time stamp algorithms outperform iteration-level parallelization techniques in most test cases and gain speedups over sequential execution for loops that have heavy iteration workloads. The PCR algorithm performs best because it makes a better trade-off between maximizing the parallelism and minimizing the analysis overhead. For loops with light or unknown iteration loads, an alternative speculative runtime parallelization technique is preferred.