FPGA implementation of neighborhood-of-four cellular automata random number generators

  • Authors:
  • Barry Shackleford;Motoo Tanaka;Richard J. Carter;Greg Snider

  • Affiliations:
  • Hewlett-Packard Laboratories, Palo Alto, CA;Hewlett-Packard Laboratories, Palo Alto, CA;Hewlett-Packard Laboratories, Palo Alto, CA;Hewlett-Packard Laboratories, Palo Alto, CA

  • Venue:
  • FPGA '02 Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-programmable gate arrays
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Random number generators (RNGs) based upon neighborhood-of-four cellular automata (CA) with asymmetrical, non-local connections are explored. A number of RNGs that pass Marsaglia's rigorous Diehard suite of random number tests have been discovered. A neighborhood size of four allows a single CA cell to be implemented with a four-input lookup table and a one-bit register which are common building blocks in popular field programmable gate arrays (FPGAs). The investigated networks all had periodic (wrap around) boundary conditions with either 1-d, 2-d, or 3-d interconnection topologies. Trial designs of 64-bit networks using a Xilinx XCV1000-6 FPGA predict a maximum clock rate of 214 MHz to 230 MHz depending upon interconnection topology.