Effects of ensemble-TCP

  • Authors:
  • Lars Eggert;John Heidemann;Joe Touch

  • Affiliations:
  • USC Information Sciences Institute, Marina del Rey, CA;USC Information Sciences Institute, Marina del Rey, CA;USC Information Sciences Institute, Marina del Rey, CA

  • Venue:
  • ACM SIGCOMM Computer Communication Review
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

TCP currently recalculates the state of each connection from a fixed set of initial parameters; this recalculation occurs over several round trips, during which the connection can be less than efficient. TCP control block sharing is a technique for reusing information among connections in series and aggregating it among connections in parallel. This paper explores the design space of a modified TCP stack that utilizes these two ideas, and one possible design (E-TCP) is presented in detail. E-TCP has been designed so that the network transmission behavior of group of parallel E-TCP connections closely resembles that of a single TCP/Reno connection. Simulated web accesses using HTTP/1.0 over E-TCP show a significant performance improvement compared to TCP/Reno connection bundles. This paper is first to evaluate performance using four different intra-ensemble schedulers for different workloads. In one scenario simulating a common case, E-TCP is 4-75% faster than Reno for transmitting the HTML parts of various pages, and 17-61% faster transmitting the whole pages. In the same scenario, reusing cached state speeds up repeated E-TCP page accesses by 17-53% for the HTML parts and 10-28% for the whole pages, compared to the initial access. E-TCP can also be integrated with other proposed TCP extensions (such as TCP/Vegas or TCP/SACK), to further improve performance.