REDI: an efficient fault oriented procedure to identify redundant faults in combinational logic circuits

  • Authors:
  • Chen Wang;Irith Pomeranz;Sudhakar M. Reddy

  • Affiliations:
  • University of Iowa, Iowa City, IA;Purdue University, West Lafayette, IN;University of Iowa, Iowa City, IA

  • Venue:
  • Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this work, a new and effective procedure, called REDI, to efficiently identify redundant single stuck-at faults in combinational logic circuits is proposed. The method is fault oriented and uses sensitizability of partial paths to determine redundant faults. It uses only implications and hence may not determine all the redundant faults of a circuit. However, experimental results presented on benchmark circuits show that the procedure identifies nearly all the redundant faults in most of the benchmark circuits. The key features of REDI that make it efficient are: partial path sensitization, blockage learning, dynamic branch ordering and fault grouping. Experimental results on benchmark circuits demonstrate the efficiency of the proposed procedure in identifying redundant faults in combinational logic circuits.