From symptom to cause: localizing errors in counterexample traces

  • Authors:
  • Thomas Ball;Mayur Naik;Sriram K. Rajamani

  • Affiliations:
  • Microsoft Research;Purdue University;Microsoft Research

  • Venue:
  • POPL '03 Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

There is significant room for improving users' experiences with model checking tools. An error trace produced by a model checker can be lengthy and is indicative of a symptom of an error. As a result, users can spend considerable time examining an error trace in order to understand the cause of the error. Moreover, even state-of-the-art model checkers provide an experience akin to that provided by parsers before syntactic error recovery was invented: they report a single error trace per run. The user has to fix the error and run the model checker again to find more error traces.We present an algorithm that exploits the existence of correct traces in order to localize the error cause in an error trace, report a single error trace per error cause, and generate multiple error traces having independent causes. We have implemented this algorithm in the context of slam, a software model checker that automatically verifies temporal safety properties of C programs, and report on our experience using it to find and localize errors in device drivers. The algorithm typically narrows the location of a cause down to a few lines, even in traces consisting of hundreds of statements.