Modeling dependencies in protein-DNA binding sites

  • Authors:
  • Yoseph Barash;Gal Elidan;Nir Friedman;Tommy Kaplan

  • Affiliations:
  • Hebrew University, Jerusalem, Israel;Hebrew University, Jerusalem, Israel;Hebrew University, Jerusalem, Israel;Hebrew University, Jerusalem, Israel and The Hebrew University, Hadassah Medical School, Jerusalem, Israel

  • Venue:
  • RECOMB '03 Proceedings of the seventh annual international conference on Research in computational molecular biology
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

The availability of whole genome sequences and high-throughput genomic assays opens the door for in silico analysis of transcription regulation. This includes methods for discovering and characterizing the binding sites of DNA-binding proteins, such as transcription factors. A common representation of transcription factor binding sites is a position specific score matrix (PSSM). This representation makes the strong assumption that binding site positions are independent of each other. In this work, we explore Bayesian network representations of binding sites that provide different tradeoffs between complexity (number of parameters) and the richness of dependencies between positions. We develop the formal machinery for learning such models from data and for estimating the statistical significance of putative binding sites. We then evaluate the ramifications of these richer representations in characterizing binding site motifs and predicting their genomic locations. We show that these richer representations improve over the PSSM model in both tasks.