How to Achieve a McEliece-Based Digital Signature Scheme

  • Authors:
  • Nicolas Courtois;Matthieu Finiasz;Nicolas Sendrier

  • Affiliations:
  • -;-;-

  • Venue:
  • ASIACRYPT '01 Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

McEliece is one of the oldest known public key cryptosystems. Though it was less widely studied than RSA, it is remarkable that all known attacks are still exponential. It is widely believed that code-based cryptosystems like McEliece do not allow practical digital signatures. In the present paper we disprove this belief and show a way to build a practical signature scheme based on coding theory. Its security can be reduced in the random oracle model to the well-known syndrome decoding problem and the distinguishability of permuted binary Goppa codes from a random code. For example we propose a scheme with signatures of 81-bits and a binary security workfactor of 283.