Analysis of RNS-FPL Synergy for High Throughput DSP Applications: Discrete Wavelet Transform

  • Authors:
  • Javier Ramírez;Antonio García;Pedro G. Fernández;Luis Parilla;Antonio Lloris-Ruíz

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • FPL '00 Proceedings of the The Roadmap to Reconfigurable Computing, 10th International Workshop on Field-Programmable Logic and Applications
  • Year:
  • 2000

Quantified Score

Hi-index 0.01

Visualization

Abstract

This paper focuses on the implementation over FPL devices of high throughput DSP applications taking advantage of RNS arithmetic. The synergy between the RNS and modern FPGA device families, providing built-in tables and fast carry and cascade chains, makes it possible to accelerate MAC intensive real-time and DSP systems. In this way, a slow high dynamic range binary 2's complement system can be partitioned into various parallel and high throughput small word-length RNS channels without inter-channel carry dependencies. To illustrate the design methodology, novel RNS-based architectures for multi-octave orthogonal DWT and its inverse are implemented using structural level VHDL synthesis. Area analysis and performance simulation are conducted. A relevant throughput improvement for the proposed RNS-based solution is obtained, compared to the equivalent 2's complement implementation.