Implementation of Elliptic Curve Cryptography with Built-In Counter Measures against Side Channel Attacks

  • Authors:
  • Elena Trichina;Antonio Bellezza

  • Affiliations:
  • -;-

  • Venue:
  • CHES '02 Revised Papers from the 4th International Workshop on Cryptographic Hardware and Embedded Systems
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many software implementations of public key cryptosystems have been concerned with efficiency. The advent of side channel attacks, such as timing and power analysis attacks, force us to reconsider the strategy of implementation of group arithmetic. This paper presents a study of software counter measures against side channel attacks for elliptic curve cryptosystems.We introduce two new counter measures. The first is a new implementation technique, namely, homogeneous group operations, which has the property that addition and doubling on elliptic curves cannot be distinguished from side channel analysis. Being inexpensive time-wise, this technique is an alternative to a well-known Montgomery ladder. The second is a non-deterministic method of point exponentiation with precomputations. Although requiring rather large ROM, it provides an effective resistance against high-order power analysis attacks for the price of index re-computations and ROM accesses.An experimental implementation of NIST-recommended elliptic curves over binary fields with a balanced suite of counter measures built-in in group arithmetic is presented, and the penalty paid is analyzed. The results of the implementation in C on an AMD Duron 600 MHz running Linux are included in the paper.