Towards Sound Approaches to Counteract Power-Analysis Attacks

  • Authors:
  • Suresh Chari;Charanjit S. Jutla;Josyula R. Rao;Pankaj Rohatgi

  • Affiliations:
  • -;-;-;-

  • Venue:
  • CRYPTO '99 Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Side channel cryptanalysis techniques, such as the analysis of instantaneous power consumption, have been extremely effective in attacking implementations on simple hardware platforms. There are several proposed solutions to resist these attacks, most of which are ad-hoc and can easily be rendered ineffective. A scientific approach is to create a model for the physical characteristics of the device, and then design implementations provably secure in that model, i.e, they resist generic attacks with an a priori bound on the number of experiments. We propose an abstract model which approximates power consumption in most devices and in particular small single-chip devices. Using this, we propose a generic technique to create provably resistant implementations for devices where the power model has reasonable properties, and a source of randomness exists. We prove a lower bound on the number of experiments required to mount statistical attacks on devices whose physical characteristics satisfy reasonable properties.