The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm

  • Authors:
  • Ehud Artzy;Gideon Frieder;Gabor T. Herman

  • Affiliations:
  • Amiad, 12335, Israel;Medical Image Processing Group, Department of Computer Science, State University of New York at Buffalo, 4226 Ridge Lea Road, Amherst, New York;Medical Image Processing Group, Department of Computer Science, State University of New York at Buffalo, 4226 Ridge Lea Road, Amherst, New York

  • Venue:
  • SIGGRAPH '80 Proceedings of the 7th annual conference on Computer graphics and interactive techniques
  • Year:
  • 1980

Quantified Score

Hi-index 0.00

Visualization

Abstract

In many three-dimensional imaging applications the three-dimensional scene is represented by a three-dimensional array of volume elements, or voxels for short. A subset Q of the voxels is specified by some property. The objects in the scene are then defined as subsets of Q formed by voxels which are “connected” in some appropriate sense. It is often of interest to detect and display the surface of an object in the scene, specified say by one of the voxels in it. In this paper, the problem of surface detection is translated into a problem of traversal of a directed graph, G. The nodes of G correspond to faces separating voxels in Q from voxels not in Q. It has been proven that connected subgraphs of G correspond to surfaces of connected components of Q (i.e., of objects in the scene). Further properties of the directed graph have been proven, which allow us to keep the number of marked nodes (needed to avoid loops in the graph traversal) to a small fraction of the total number of visited nodes. This boundary detection algorithm has been implemented. We discuss the interaction between the underlying mathematical theory and the design of the working software. We illustrate the software on some clinical studies in which the input is computed tomographic (CT) data and the output is dynamically rotating three-dimensional displays of isolated organs. Even though the medical application leads to very large scale problems, our theory and design allows us to use our method routinely on the minicomputer of a CT scanner.