Representation and Self-Similarity of Shapes

  • Authors:
  • Tyng-Luh Liu;Davi Geiger;Robert V. Kohn

  • Affiliations:
  • -;-;-

  • Venue:
  • ICCV '98 Proceedings of the Sixth International Conference on Computer Vision
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

Representing shapes is a significant problem for vision systems that must recognize or classify objects. We derive a representation for a given shape by investigating its self-similarities, and constructing its shape axis(SA) and shape axis tree (SA-tree).We start with a shape, its boundary contour, and two different parameterizations for the contour. To measure its self-similarity we consider matching pairs of points (and their tangents) along the boundary contour, i.e., matching the two parameterizations. The matching, or self-similarity criteria may vary, e.g., co-circularity, parallelism, distance, region homogeneity. The loci of middle points of the pairing contour points are the shape axis and they can be grouped into a unique tree graph, the SA-tree. The shape axis for the co-circularity criteria is compared to the symmetry axis. An interpretation in terms of object parts is also presented.