The feasibility of supporting large-scale live streaming applications with dynamic application end-points

  • Authors:
  • Kunwadee Sripanidkulchai;Aditya Ganjam;Bruce Maggs;Hui Zhang

  • Affiliations:
  • Carnegie Mellon University;Carnegie Mellon University;Carnegie Mellon University and Akamai Technologies;Carnegie Mellon University

  • Venue:
  • Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications
  • Year:
  • 2004

Quantified Score

Hi-index 0.02

Visualization

Abstract

While application end-point architectures have proven to be viable solutions for large-scale distributed applications such as distributed computing and file-sharing, there is little known about its feasibility for more bandwidth-demanding applications such as live streaming. Heterogeneity in bandwidth resources and dynamic group membership, inherent properties of application end-points, may adversely affect the construction of a usable and efficient overlay. At large scales, the problems become even more challenging. In this paper, we study one of the most prominent architectural issues in overlay multicast: the feasibility of supporting large-scale groups using an application end-point architecture. We look at three key requirements for feasibility: (i) are there enough resources to construct an overlay, (ii) can a stable and connected overlay be maintained in the presence of group dynamics, and (iii) can an efficient overlay be constructed? Using traces from a large content delivery network, we characterize the behavior of users watching live audio and video streams. We show that in many common real-world scenarios, all three requirements are satisfied. In addition, we evaluate the performance of several design alternatives and show that simple algorithms have the potential to meet these requirements in practice. Overall, our results argue for the feasibility of supporting large-scale live streaming using an application end-point architecture.