Implementing LDPC Decoding on Network-on-Chip

  • Authors:
  • T. Theocharides;G. Link;N. Vijaykrishnan;M. J. Irwin

  • Affiliations:
  • Penn State University;Penn State University;Penn State University;Penn State University

  • Venue:
  • VLSID '05 Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Low-Density Parity Check codes are a form of Error Correcting Codes used in various wireless communication applications and in disk drives. While LDPC codes are desirable due to their ability to achieve near Shannon-limit communication channel capacity, the computational complexity of the decoder is a major concern. LDPC decoding consists of a series of iterative computations derived from a message-passing bipartite graph. In order to efficiently support the communication intensive nature of this application, we present a LDPC decoder architecture based on a network-on-chip communication fabric that provides a 1.2Gbps decoded throughput rate for a 3/4 code rate, 1024-bit block LDPC code. The proposed architecture can be reconfigured to support other LDPC codes of different block sizes and code rates. We also propose two novel power-aware optimizations that reduce the power consumption by up to 30%.