Efficient packet classification for network intrusion detection using FPGA

  • Authors:
  • Haoyu Song;John W. Lockwood

  • Affiliations:
  • Washington University, St. Louis, MO;Washington University, St. Louis, MO

  • Venue:
  • Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Using FPGA technology for real-time network intrusion detection has gained many research efforts recently. In this paper, a novel packet classification architecture called BV-TCAM is presented, which is implemented for an FPGA-based Network Intrusion Detection System (NIDS). The classifier can report multiple matches at gigabit per second network link rates. The BV-TCAM architecture combines the Ternary Content Addressable Memory (TCAM) and the Bit Vector (BV) algorithm to effectively compress the data representations and boost throughput. A tree-bitmap implementation of the BV algorithm is used for source and destination port lookup while a TCAM performs the lookup of the other header fields, which can be represented as a prefix or exact value. The architecture eliminates the requirement for prefix expansion of port ranges. With the aid of a small embedded TCAM, packet classification can be implemented in a relatively small part of the available logic of an FPGA. The design is prototyped and evaluated in a Xilinx FPGA XCV2000E on the FPX platform. Even with the most difficult set of rules and packet inputs, the circuit is fast enough to sustain OC48 traffic throughput. Using larger and faster FPGAs, the system can work at speeds greater than OC192.