Two-View Geometry Estimation Unaffected by a Dominant Plane

  • Authors:
  • Ondrej Chum;Tomas Werner;Jiri Matas

  • Affiliations:
  • Czech Technical University in Prague;Czech Technical University in Prague;Czech Technical University in Prague

  • Venue:
  • CVPR '05 Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

A RANSAC-based algorithm for robust estimation of epipolar geometry from point correspondences in the possible presence of a dominant scene plane is presented. The algorithm handles scenes with (i) all points in a single plane, (ii) majority of points in a single plane and the rest off the plane, (iii) no dominant plane. It is not required to know a priori which of the cases (i) 驴 (iii) occurs. The algorithm exploits a theorem we proved, that if five or more of seven correspondences are related by a homography then there is an epipolar geometry consistent with the seven-tuple as well as with all correspondences related by the homography. This means that a seven point sample consisting of two outliers and five inliers lying in a dominant plane produces an epipolar geometry which is wrong and yet consistent with a high number of correspondences. The theorem explains why RANSAC often fails to estimate epipolar geometry in the presence of a dominant plane. Rather surprisingly, the theorem also implies that RANSAC-based homography estimation is faster when drawing non-minimal samples of seven correspondences than minimal samples of four correspondences.