Defect Tolerance for Gracefully-Degradable Microfluidics-Based Biochips

  • Authors:
  • Fei Su;Krishnendu Chakrabarty

  • Affiliations:
  • Duke University;Duke University

  • Venue:
  • VTS '05 Proceedings of the 23rd IEEE Symposium on VLSI Test
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Defect tolerance is an important design consideration for microfluidics-based biochips that are used for safety-critical applications. We propose a defect tolerance methodology based on graceful degradation and dynamic reconfiguration. We first introduce a tile-based biochip architecture, which is scalable for large-scale bioassays. A clustered defect model is used to evaluate the graceful degradation method for tile-based biochips. The proposed schemes ensure that the bioassays mapped to a droplet-based microfluidic array during design can be executed on a defective biochip through operation rescheduling and/or resource rebinding. Real-life biochemical procedures, namely polymerase chain reaction (PCR) and multiplexed in-vitro diagnostics on human physiological fluids, are used to evaluate the proposed defect tolerance schemes.