Efficient Hardware Data Mining with the Apriori Algorithm on FPGAs

  • Authors:
  • Zachary K. Baker;Viktor K. Prasanna

  • Affiliations:
  • University of Southern California;University of Southern California

  • Venue:
  • FCCM '05 Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Apriori algorithm is a popular correlation-based data-mining kernel. However, it is a computationally expensive algorithm and the running times can stretch up to days for large databases, as database sizes can extend to Gigabytes. Through the use of a new extension to the systolic array architecture, time required for processing can be significantly reduced. Our array architecture implementation on a Xilinx Virtex-II Pro 100 provides a performance improvement that can be orders of magnitude faster than the state-of-the-art software implementations. The system is easily scalable and introduces an efficient "systolic injection" method for intelligently reporting unpredictably generated mid-array results to a controller without any chance of collision or excessive stalling.