Approximate motion planning and the complexity of the boundary of the union of simple geometric figures

  • Authors:
  • Helmut Alt;Rudolf Fleischer;Michael Kaufmann;Kurt Mehlhorn;Stefan Näher;Stefan Schirra;Christian Uhrig

  • Affiliations:
  • Fachbereich Mathematik, Freie Universität Berlin, Arnimallee 2-6, D-1000 Berlin 33, Federal Republic of Germany;Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald 15, D-6600 Saarbrücken, Federal Republic of Germany;Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald 15, D-6600 Saarbrücken, Federal Republic of Germany;Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald 15, D-6600 Saarbrücken, Federal Republic of Germany;Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald 15, D-6600 Saarbrücken, Federal Republic of Germany;Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald 15, D-6600 Saarbrücken, Federal Republic of Germany;Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald 15, D-6600 Saarbrücken, Federal Republic of Germany

  • Venue:
  • SCG '90 Proceedings of the sixth annual symposium on Computational geometry
  • Year:
  • 1990

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study rigid motions of a rectangle amidst polygonal obstacles. The best known algorithms for this problem have running time &OHgr;(n2) where n is the number of obstacle corners. We introduce the tightness of a motion planning problem as a measure of the difficulty of a planning problem in an intuitive sense and describe an algorithm with running time &ogr;((a/b · 1/&egr; crit + 1)n(log n)2), where a ≥ b are the lengths of the sides of a rectangle and &egr;crit is the tightness of the problem. We show further that the complexity (= number of vertices) of the boundary of n bow-ties (c.f. Figure 1.1) is &Ogr;(n). Similar results for the union of other simple geometric figures such as triangles and wedges are also presented.