Self-tuning wireless network power management

  • Authors:
  • Manish Anand;Edmund B. Nightingale;Jason Flinn

  • Affiliations:
  • Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI;Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI;Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI

  • Venue:
  • Wireless Networks - Special issue: Selected papers from ACM MobiCom 2003
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Current wireless network power management often substantially degrades performance and may even increase overall energy usage when used with latency-sensitive applications. We propose self-tuning power management (STPM) that adapts its behavior to the access patterns and intent of applications, the characteristics of the network interface, and the energy usage of the platform. We have implemented STPM as a Linux kernel module--our results show substantial benefits for distributed file systems, streaming audio, and thin-client applications. Compared to default 802.11b power management, STPM reduces the total energy usage of an iPAQ running the Coda distributed file system by 21% while also reducing interactive file system delay by 80%. Further, STPM adapts to diverse operating conditions: it yields good results on both laptops and handhelds, supports 802.11b network interfaces with substantially different characteristics, and performs well across a range of application network access patterns.