Minimizing energy for wireless web access with bounded slowdown

  • Authors:
  • Ronny Krashinsky;Hari Balakrishnan

  • Affiliations:
  • MIT Laboratory for Computer Science, Cambridge, MA;MIT Laboratory for Computer Science, Cambridge, MA

  • Venue:
  • Proceedings of the 8th annual international conference on Mobile computing and networking
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

On many battery-powered mobile computing devices, the wireless network is a significant contributor to the total energy consumption. In this paper, we investigate the interaction between energy-saving protocols and TCP performance for Web like transfers. We show that the popular IEEE 802.11 power-saving mode (PSM), a "static" protocol, can harm performance by increasing fast round trip times (RTTs) to 100 ms; and that under typical Web browsing workloads, current implementations will unnecessarily spend energy waking up during long idle periods.To overcome these problems, we present the Bounded-Slowdown (BSD) protocol, a PSM that dynamically adapts to network activity. BSD is an optimal solution to the problem of minimizing energy consumption while guaranteeing that a connection's RTT does not increase by more than a factor p over its base RTT, where p is a protocol parameter that exposes the trade-off between minimizing energy and reducing latency. works by staying awake for a short period of time after the link idle. We present several trace-driven simulation results that show that, compared to a static PSM, the Bounded Slowdown protocol reduces average Web page retrieval times by 5--64%, while simultaneously reducing energy consumption by 1--14% (and by 13X compared to no power management).