Modeling and analysis of leakage induced damping effect in low voltage LSIs

  • Authors:
  • Jie Gu;John Keane;Chris Kim

  • Affiliations:
  • University of Minnesota, Minneapolis, MN;University of Minnesota, Minneapolis, MN;University of Minnesota, Minneapolis, MN

  • Venue:
  • Proceedings of the 2006 international symposium on Low power electronics and design
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Although there has been extensive research on controlling leakage power, the fact that leaky transistors can act as a damping element for supply noise has been long ignored or unnoticed in the design community. This paper investigates the leakage induced damping effect that helps suppress the supply noise. By developing physics-based impedance models for active and leakage currents, we show that leakage, particularly gate tunneling leakage, provides more damping than strong-inversion current. Simulations were performed in a 32nm CMOS technology to validate our models under PVT variations and to explore the voltage dependent behavior of this phenomenon. Design example utilizing leakage induced damping such as decap assignment is discussed with results showing 15.6% saving in decap area.