Novel low-overhead operand isolation techniques for low-power datapath synthesis

  • Authors:
  • N. Banerjee;A. Raychowdhury;K. Roy;S. Bhunia;H. Mahmoodi

  • Affiliations:
  • Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Power consumption in datapath modules due to redundant switching is an important design concern for high-performance applications. Operand isolation schemes that reduce this redundant switching incur considerable overhead in terms of delay, power, and area. This paper presents novel operand isolation techniques based on supply gating that reduce overheads associated with isolating circuitry. The proposed schemes also target leakage minimization and additional operand isolation at the internal logic of datapath to further reduce power consumption. We integrate the proposed techniques and power/delay models to develop a synthesis flow for low-power datapath synthesis. Simulation results show that the proposed operand isolation techniques achieve at least 40% reduction in power consumption compared to original circuit with minimal area overhead (5%) and delay penalty (0.15%).