Simulation of random cell displacements in QCA

  • Authors:
  • Gabriel Schulhof;Konrad Walus;Graham A. Jullien

  • Affiliations:
  • University of Calgary, Canada;University of British Columbia;University of Calgary

  • Venue:
  • ACM Journal on Emerging Technologies in Computing Systems (JETC)
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We analyze the behavior of quantum-dot cellular automata (QCA) building blocks in the presence of random cell displacements. The QCA cells are modeled using the coherence vector description and simulated using QCADesigner. We evaluate various fundamental circuits: the wire, the inverter, the majority gate, and the two-wire crossing approaches: the coplanar crossover and the multilayer crossover. Our results show that different building blocks have different displacement tolerances. The coplanar crossover and inverter perform the weakest. The wire is the most robust. We have found displacement tolerances to be a function of circuit layout and geometry rather than cell size.