Conjoining soft-core FPGA processors

  • Authors:
  • David Sheldon;Rakesh Kumar;Frank Vahid;Dean Tullsen;Roman Lysecky

  • Affiliations:
  • University of California, Riverside;University of California, San Diego;University of California, Riverside;University of California, San Diego;University of Arizona

  • Venue:
  • Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Soft-core programmable processors on field-programmable gate arrays (FPGAs) can be custom synthesized to instantiate only those hardware units, such as multipliers and floating-point units, that an application requires to meet performance demands, thus minimizing soft-core size on the FPGA. Conjoining processors, meaning to share hardware units among two or more processors, can further reduce soft-core size, leaving more resources for other circuits such as custom coprocessors. Using Xilinx MicroBlaze coprocessors and standard embedded system benchmarks, we show that conjoining two processors can provide 16% processor size reductions on average, with less than 1% cycle count overhead. We introduce an efficient dynamic-programming-based exploration method to find the best custom instantiation of hardware units, considering both standalone and conjoined options, for soft-core processors.