Instruction set extension with shadow registers for configurable processors

  • Authors:
  • Jason Cong;Yiping Fan;Guoling Han;Ashok Jagannathan;Glenn Reinman;Zhiru Zhang

  • Affiliations:
  • University of California, Los Angeles, Los Angeles, CA;University of California, Los Angeles, Los Angeles, CA;University of California, Los Angeles, Los Angeles, CA;University of California, Los Angeles, Los Angeles, CA;University of California, Los Angeles, Los Angeles, CA;University of California, Los Angeles, Los Angeles, CA

  • Venue:
  • Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Configurable processors are becoming increasingly popular for modern embedded systems (especially for the field-programmable system-on-a-chip). While steady progress has been made in the tools and methodologies of automatic instruction set extension for configurable processors, the limited data bandwidth available in the core processor (e.g., the number of simultaneous accesses to the register file) becomes a potential performance bottleneck. In this paper we first present a quantitative analysis of the data bandwidth limitation in configurable processors, and then propose a novel low-cost architectural extension and associated compilation techniques to address the problem. The application of our approach results in a promising performance improvement.