3D Modeling Using Planar Segments and Mesh Elements

  • Authors:
  • Ioannis Stamos;Gene Yu;George Wolberg;Siavash Zokai

  • Affiliations:
  • Hunter College/CUNY, USA;City College/CUNY, USA;City College/CUNY, USA;Brainstorm Technology, New York, USA

  • Venue:
  • 3DPVT '06 Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Range sensing technology allows the photorealistic modeling of large-scale scenes, such as urban structures. The generated 3D representations, after automated registration, are useful for urban planning, historical preservation, or virtual reality applications. One major issue in 3D modeling of complex large-scale scenes is that the final result is a dense complicated mesh. Significant, in some cases manual, post-processing (mesh simplification, hole filling) is required to make this representation usable by graphics or CAD applications. This paper presents a 3D modeling approach that models large planar scene areas of the scene with planar primitives (extracted via a segmentation pre-process), and non-planar areas with mesh primitives. In that respect, the final model is significantly compressed. Also, lines of intersection between neighboring planes are modeled as such. These steps bring the model closer to graphics/CAD applications. We present results from experiments with complex range scans from urban structures and from the interior of a large-scale landmark urban building (Grand Central Terminal, NYC).