A self-tuning configurable cache

  • Authors:
  • Ann Gordon-Ross;Frank Vahid

  • Affiliations:
  • University of California, Riverside;University of California, Irvine

  • Venue:
  • Proceedings of the 44th annual Design Automation Conference
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The memory hierarchy of a system can consume up to 50% of microprocessor system power. Previous work has shown that tuning a configurable cache to a particular application can reduce memory subsystem energy by 62% on average. We introduce a self-tuning cache that performs transparent runtime cache tuning, thus relieving the application designer and/or compiler from predetermining an application's cache configuration. The self-tuning cache applies tuning at a determined tuning interval. A good interval balances tuning process energy overhead against the energy overhead of running in a sub-optimal cache configuration, which we show wastes much energy. We present a self-tuning cache that dynamically varies the tuning interval, resulting in average energy reduction of as much as 29%, falling within 13% of an oracle-based optimal method.