Detecting Loop Closure with Scene Sequences

  • Authors:
  • Kin Leong Ho;Paul Newman

  • Affiliations:
  • Oxford Robotics Research Group, University of Oxford, Oxford, United Kingdom OX1 3PJ;Oxford Robotics Research Group, University of Oxford, Oxford, United Kingdom OX1 3PJ

  • Venue:
  • International Journal of Computer Vision
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper is concerned with "loop closing" for mobile robots. Loop closing is the problem of correctly asserting that a robot has returned to a previously visited area. It is a particularly hard but important component of the Simultaneous Localization and Mapping (SLAM) problem. Here a mobile robot explores an a-priori unknown environment performing on-the-fly mapping while the map is used to localize the vehicle. Many SLAM implementations look to internal map and vehicle estimates (p.d.fs) to make decisions about whether a vehicle is revisiting a previously mapped area or is exploring a new region of workspace. We suggest that one of the reasons loop closing is hard in SLAM is precisely because these internal estimates can, despite best efforts, be in gross error. The "loop closer" we propose, analyze and demonstrate makes no recourse to the metric estimates of the SLAM system it supports and aids---it is entirely independent. At regular intervals the vehicle captures the appearance of the local scene (with camera and laser). We encode the similarity between all possible pairings of scenes in a "similarity matrix". We then pose the loop closing problem as the task of extracting statistically significant sequences of similar scenes from this matrix. We show how suitable analysis (introspection) and decomposition (remediation) of the similarity matrix allows for the reliable detection of loops despite the presence of repetitive and visually ambiguous scenes. We demonstrate the technique supporting a SLAM system driven by scan-matching laser data in a variety of settings. Some of the outdoor settings are beyond the capability of the SLAM system itself in which case GPS was used to provide a ground truth. We further show how the techniques can equally be applied to detect loop closure using spatial images taken with a scanning laser. We conclude with an extension of the loop closing technique to a multi-robot mapping problem in which the outputs of several, uncoordinated and SLAM-enabled robots are fused without requiring inter-vehicle observations or a-priori frame alignment.