FPGA implementation of a systems identification module based upon Hopfield networks

  • Authors:
  • Miguel Atencia;Hafida Boumeridja;Gonzalo Joya;Francisco García-Lagos;Francisco Sandoval

  • Affiliations:
  • Departamento de Matemática Aplicada, E.T.S.I.Informática, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain;Departamento de Tecnología Electrónica, E.T.S.I.Telecomunicación, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain;Departamento de Tecnología Electrónica, E.T.S.I.Telecomunicación, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain;Departamento de Tecnología Electrónica, E.T.S.I.Telecomunicación, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain;Departamento de Tecnología Electrónica, E.T.S.I.Telecomunicación, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain

  • Venue:
  • Neurocomputing
  • Year:
  • 2007

Quantified Score

Hi-index 0.01

Visualization

Abstract

The aim of this contribution is to implement a hardware module that performs parametric identification of dynamical systems. The design is based upon the methodology of optimization with Hopfield neural networks, leading to an adapted version of these networks. An outstanding feature of this modified Hopfield network is the existence of weights that vary with time. Since weights can no longer be stored in read-only memories, these dynamic weights constitute a significant challenge for digital circuits, in addition to the usual issues of area occupation, fixed-point arithmetic and nonlinear functions computations. The implementation, which is accomplished on FPGA circuits, achieves modularity and flexibility, due to the usage of parametric VHDL to describe the network. In contrast to software simulations, the natural parallelism of neural networks is preserved, at a limited cost in terms of circuitry cost and processing time. The functional simulation and the synthesis show the viability of the design. In particular, the FPGA implementation exhibits a reasonably fast convergence, which is required to produce accurate parameter estimations. Current research is oriented towards integrating the estimator within an embedded adaptive controller for autonomous systems.