Normative system games

  • Authors:
  • Thomas Ågotnes;Wiebe van der Hoek;Michael Wooldridge

  • Affiliations:
  • Bergen University College, Bergen, Norway;University of Liverpool, Liverpool, UK;University of Liverpool, Liverpool, UK

  • Venue:
  • Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We develop a model of normative systems in which agents are assumed to have multiple goals of increasing priority, and investigate the computational complexity and game theoretic properties of this model. In the underlying model of normative systems, we use Kripke structures to represent the possible transitions of a multiagent system. A normative system is then simply a subset of the Kripke structure, which contains the arcs that are forbidden by the normative system. We specify an agent's goals as a hierarchy of formulae of Computation Tree Logic (CTL), a widely used logic for representing the properties of Kripke structures: the intuition is that goals further up the hierarchy are preferred by the agent over those that appear further down the hierarchy. Using this scheme, we define a model of ordinal utility, which in turn allows us to interpret our Kripke-based normative systems as games, in which agents must determine whether to comply with the normative system or not. We then characterise the computational complexity of a number of decision problems associated with these Kripke-based normative system games; for example, we show that the complexity of checking whether there exists a normative system which has the property of being a Nash implementation is NP-complete.