On the Detection of Missing-Gate Faults in Reversible Circuits by a Universal Test Set

  • Authors:
  • Hafizur Rahaman;Dipak K. Kole;Debesh K. Das;Bhargab B. Bhattacharya

  • Affiliations:
  • -;-;-;-

  • Venue:
  • VLSID '08 Proceedings of the 21st International Conference on VLSI Design
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Logic synthesis with reversible circuits has received considerable interest in the light of advances recently made in quantum computation. Implementation of a reversible circuit is envisaged by deploying several special types of quantum gates, such as k-CNOT. Newer technologies like ion trapping or nuclear magnetic resonance are required to emulate quantum gates. Although the classical stuck-at fault model is widely used for testing conventional CMOS circuits, new fault models, namely, single missing-gate fault (SMGF), repeated-gate fault (RGF), partial missing-gate fault (PMGF), and multiple missing-gate fault (MMGF), have been found to be more suitable for modeling defects in quantum k-CNOT gates. In this paper, it is shown that in an (n · n) reversible circuit implemented with k-CNOT gates, addition of only one extra control line along with duplication each k-CNOT gate yields an easily testable design, which admits a universal test set of size (n +1) that detects all SMGFs, RGFs, and PMGFs in the circuit. Keywords: Missing-gate faults, quantum computing, reversible logic, testable design, universal test set