Analysis of dynamic power management on multi-core processors

  • Authors:
  • W. Lloyd Bircher;Lizy K. John

  • Affiliations:
  • The University of Texas at Austin, Austin, TX, USA;The University of Texas at Austin, Austin, TX, USA

  • Venue:
  • Proceedings of the 22nd annual international conference on Supercomputing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Power management of multi-core processors is extremely important because it allows power/energy savings when all cores are not used. OS directed power management according to ACPI (Advanced Power and Configurations Interface) specifications is the common approach that industry has adopted for this purpose. While operating systems are capable of such power management, heuristics for effectively managing the power are still evolving. The granularity at which the cores are slowed down/turned off should be designed considering the phase behavior of the workloads. Using 3-D, video creation, office and e-learning applications from the SYSmark benchmark suite, we study the challenges in power management of a multi-core processor such as the AMD Quad-Core Opteron" and Phenom". We unveil effects of the idle core frequency on the performance and power of the active cores. We adjust the idle core frequency to have the least detrimental effect on the active core performance. We present optimized hardware and operating system configurations that reduce average active power by 30% while reducing performance by an average of less than 3%. We also present complete system measurements and power breakdown between the various systems components using the SYSmark and SPEC CPU workloads. It is observed that the processor core and the disk consume the most power, with core having the highest variability.