Efficient Deadlock Detection in Parallel Computer Systems with Wormhole Routing

  • Authors:
  • Soojung Lee

  • Affiliations:
  • GyeongIn National University of Education, 6-8 Seoksu-dong, Anyang, 430-739, Korea

  • Venue:
  • ICCS '07 Proceedings of the 7th international conference on Computational Science, Part I: ICCS 2007
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wormhole routing has been popular in massively parallel computing systems due to its low packet latency. However, it is subject to deadlock, where packets are waiting for resources in a cyclic form indefinitely. Current deadlock detection techniques are basically dependent on the time-out strategy, thus yielding unignorable number of false deadlock detections especially in heavy network loads or with long packets. Moreover, several packets in a deadlock may be marked as deadlocked, which would saturate the resources allocated for recovery. This paper proposes a simple but more accurate deadlock detection scheme which is less dependent on the time-out value. The proposed scheme presumes deadlock only when a cyclic dependency among blocked packets exists. Consequently, the suggested scheme considerably reduces the probability of detecting false deadlocks over previous schemes, thus enabling more efficient deadlock recovery and higher network throughput. Simulation results are provided to demonstrate the efficiency of the proposed scheme.