Spinning beacons for precise indoor localization

  • Authors:
  • Ho-lin Chang;Jr-ben Tian;Tsung-Te Lai;Hao-Hua Chu;Polly Huang

  • Affiliations:
  • National Taiwan University, Taipei, Taiwan Roc;National Taiwan University, Taipei, Taiwan Roc;National Taiwan University, Taipei, Taiwan Roc;National Taiwan University, Taipei, Taiwan Roc;National Taiwan University, Taipei, Taiwan Roc

  • Venue:
  • Proceedings of the 6th ACM conference on Embedded network sensor systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This work proposes the novel use of spinning beacons for precise indoor localization. The proposed "SpinLoc" (Spinning Indoor Localization) system uses "spinning" (i.e., rotating) beacons to create and detect predictable and highly distinguishable Doppler signals for sub-meter localization accuracy. The system analyzes Doppler frequency shifts of signals from spinning beacons, which are then used to calculate orientation angles to a target. By obtaining orientation angles from two or more beacons, SpinLoc can precisely locate stationary or slow-moving targets. After designing and implementing the system using MICA2 motes, its performance was tested in an indoor garage environment. The experimental results revealed a median error of 40~50 centimeters and a 90% error of 70~90 centimeters.