Sleepy stack leakage reduction

  • Authors:
  • Jun Cheol Park;Vincent J. Mooney

  • Affiliations:
  • Mobility Group, Intel Corporation, Folsom, CA;School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Leakage power consumption of current CMOS technology is already a great challenge. International Technology Roadmap for Semiconductors projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particularly for CMOS circuits in nanoscale technology. We propose a novel ultra-low leakage CMOS circuit structure which we call "sleepy stack." Unlike many other previous approaches, sleepy stack can retain logic state during sleep mode while achieving ultra-low leakage power consumption. We apply the sleepy stack to generic logic circuits. Although the sleepy stack incurs some delay and area overhead, the sleepy stack technique achieves the lowest leakage power consumption among known state-saving leakage reduction techniques, thus, providing circuit designers with new choices to handle the leakage power problem.