Decoding nanowire arrays fabricated with the multi-spacer patterning technique

  • Authors:
  • M. Haykel Ben Jamaa;Yusuf Leblebici;Giovanni De Micheli

  • Affiliations:
  • Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland;Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland;Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

  • Venue:
  • Proceedings of the 46th Annual Design Automation Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Silicon nanowires are a promising solution to address the increasing challenges of fabrication and design at the future nodes of the Complementary Metal-Oxide-Semiconductor (CMOS) Technology roadmap. Despite the attractive opportunity that offers their organization onto regular crossbars, the problem of designing the nano-wire decoder is still challenging and highly dependent on the nanowire fabrication technology. In this paper, we introduce a novel design style and encoding scheme for decoding nanowires fabricated with the Multi-Spacer-Patterning Technique (MSPT); and we present a method based on Gray codes that reduces the fabrication cost and improves the decoder reliability. We show that by arranging the code in a Gray code fashion, we decrease the fabrication complexity by 17% and the variability by 18% on average. By optimizing the decoder parameters, the simulations showed an improvement of the crossbar yield by 40% and a reduction of the effective bit area by 51% to 169 nm2.