Constrained motion model of mobile robots and its applications

  • Authors:
  • Fei Zhang;Yugeng Xi;Zongli Lin;Weidong Chen

  • Affiliations:
  • Department of Automation, Shanghai Jiao Tong University, Shanghai, China;Department of Automation, Shanghai Jiao Tong University, Shanghai, China;Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA;Department of Automation, Shanghai Jiao Tong University, Shanghai, China

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Target detecting and dynamic coverage are fundamental tasks in mobile robotics and represent two important features of mobile robots: mobility and perceptivity. This paper establishes the constrained motion model and sensor model of a mobile robot to represent these two features and defines the k-step reachable region to describe the states that the robot may reach. We show that the calculation of the k-step reachable region can be reduced from that of 2k reachable regions with the fixed motion styles to k + 1 such regions and provide an algorithm for its calculation. Based on the constrained motion model and the k-step reachable region, the problems associated with target detecting and dynamic coverage are formulated and solved. For target detecting, the k-step detectable region is used to describe the area that the robot may detect, and an algorithm for detecting a target and planning the optimal path is proposed. For dynamic coverage, the k-step detected region is used to represent the area that the robot has detected during its motion, and the dynamic-coverage strategy and algorithm are proposed. Simulation results demonstrate the efficiency of the coverage algorithm in both convex and concave environments.