Backpropagation without human supervision for visual control in quake II

  • Authors:
  • Matt Parker;Bobby D. Bryant

  • Affiliations:
  • Department of Computer Science and Engineering, University of Nevada, Reno;Department of Computer Science and Engineering, University of Nevada, Reno

  • Venue:
  • CIG'09 Proceedings of the 5th international conference on Computational Intelligence and Games
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.