Improvements to hybrid incremental SAT algorithms

  • Authors:
  • Florian Letombe;Joao Marques-Silva

  • Affiliations:
  • School of Electronics and Computer Science, University of Southampton, UK;School of Electronics and Computer Science, University of Southampton, UK

  • Venue:
  • SAT'08 Proceedings of the 11th international conference on Theory and applications of satisfiability testing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Boolean Satisfiability (SAT) solvers have been successfully applied to a wide range of practical applications, including hardware model checking, software model finding, equivalence checking, and planning, among many others. SAT solvers are also the building block of more sophisticated decision procedures, including Satisfiability Modulo Theory (SMT) solvers. The large number of applications of SAT yields ever more challenging problem instances, and motivate the development of more efficient algorithms. Recent work studied hybrid approaches for SAT, which involves integrating incomplete and complete SAT solvers. This paper proposes a number of improvements to hybrid SAT solvers. Experimental results demonstrate that the proposed optimizations are effective. The resulting algorithms in general perform better and, more importantly, are significantly more robust.