Optimizing the power delivery network in dynamically voltage scaled systems with uncertain power mode transition times

  • Authors:
  • Hwisung Jung;Massoud Pedram

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the increasing demand for energy-efficient power delivery network (PDN) in today's electronic systems, configuring an optimal PDN that supports power management techniques, e.g., dynamic voltage scaling (DVS), has become a daunting, yet vital task. This paper describes how to model and configure such a PDN so as to minimize the total energy dissipation in DVS-enabled systems, while satisfying total PDN cost and/or power conversion efficiency constraints. The problem of configuring an energy-efficient PDN under various constraints is subsequently formulated by using a controllable Markovian decision process (MDP) model and solved optimally as a policy optimization problem. The key rationale for utilizing MDP for solving the PDN configuration problem is to manage stochastic behavior of the power mode transition times of DVS-enabled systems. Simulation results demonstrate that the proposed technique ensures energy savings, while satisfying design goals in terms of total PDN cost and its power efficiency.