FlashPower: a detailed power model for NAND flash memory

  • Authors:
  • Vidyabhushan Mohan;Sudhanva Gurumurthi;Mircea R. Stan

  • Affiliations:
  • University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA;University of Virginia, Charlottesville, VA

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Flash memory is widely used in consumer electronics products, such as cell-phones and music players, and is increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even servers. There is a rich microarchitectural design space for flash memory and there are several architectural options for incorporating flash into the memory hierarchy. Exploring this design space requires detailed insights into the power characteristics of flash memory. In this paper, we present FlashPower, a detailed analytical power model for Single-Level Cell (SLC) based NAND flash memory, which is used in high-performance flash products. We have integrated FlashPower with CACTI 5.3, which is widely used in the architecture community for studying memory organizations. FlashPower takes as input device technology and microarchitectural parameters to estimate the power consumed by a flash chip during its various operating modes. We have validated FlashPower against published chip power measurements and show that they are comparable.