DOS: a scalable optical switch for datacenters

  • Authors:
  • Xiaohui Ye;Yawei Yin;S. J. B. Yoo;Paul Mejia;Roberto Proietti;Venkatesh Akella

  • Affiliations:
  • University of California, Davis, California;University of California, Davis, California;University of California, Davis, California;University of California, Davis, California;University of California, Davis, California;University of California, Davis, California

  • Venue:
  • Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper discusses the architecture and performance studies of Datacenter Optical Switch (DOS) designed for scalable and high-throughput interconnections within a data center. DOS exploits wavelength routing characteristics of a switch fabric based on an Arrayed Waveguide Grating Router (AWGR) that allows contention resolution in the wavelength domain. Simulation results indicate that DOS exhibits lower latency and higher throughput even at high input loads compared with electronic switches or previously proposed optical switch architectures such as OSMOSIS [4, 5] and Data Vortex [6, 7]. Such characteristics, together with very high port count on a single switch fabric make DOS attractive for data center applications where the traffic patterns are known to be bursty with high temporary peaks [13]. DOS exploits the unique characteristics of the AWGR fabric to reduce the delay and complexity of arbitration. We present a detailed analysis of DOS using a cycle-accurate network simulator. The results show that the latency of DOS is almost independent of the number of input ports and does not saturate even at very high (approx 90%) input load. Furthermore, we show that even with 2 to 4 wavelengths, the performance of DOS is significantly better than an electrical switch network based on state-of-the-art flattened butterfly topology.