Phastlane: a rapid transit optical routing network

  • Authors:
  • Mark J. Cianchetti;Joseph C. Kerekes;David H. Albonesi

  • Affiliations:
  • Cornell University, Ithaca, NY, USA;Cornell University, Ithaca, NY, USA;Cornell University, Ithaca, NY, USA

  • Venue:
  • Proceedings of the 36th annual international symposium on Computer architecture
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Tens and eventually hundreds of processing cores are projected to be integrated onto future microprocessors, making the global interconnect a key component to achieving scalable chip performance within a given power envelope. While CMOS-compatible nanophotonics has emerged as a leading candidate for replacing global wires beyond the 22nm timeframe, on-chip optical interconnect architectures proposed thus far are either limited in scalability or are dependent on comparatively slow electrical control networks. In this paper, we present Phastlane, a hybrid electrical/optical routing network for future large scale, cache coherent multicore microprocessors. The heart of the Phastlane network is a low-latency optical crossbar that uses simple predecoded source routing to transmit cache-line-sized packets several hops in a single clock cycle under contentionless conditions. When contention exists, the router makes use of electrical buffers and, if necessary, a high speed drop signaling network. Overall, Phastlane achieve 2X better network performance than a state-of-the-art electrical baseline while consuming 80% less network power.