Helios: a hybrid electrical/optical switch architecture for modular data centers

  • Authors:
  • Nathan Farrington;George Porter;Sivasankar Radhakrishnan;Hamid Hajabdolali Bazzaz;Vikram Subramanya;Yeshaiahu Fainman;George Papen;Amin Vahdat

  • Affiliations:
  • University of California, San Diego, La Jolla, CA, USA;University of California, San Diego, La Jolla, CA, USA;University of California, San Diego, La Jolla, CA, USA;University of California, San Diego, La Jolla, CA, USA;University of California, San Diego, La Jolla, CA, USA;University of California, San Diego, La Jolla, CA, USA;University of California, San Diego, La Jolla, CA, USA;University of California, San Diego, La Jolla, CA, USA

  • Venue:
  • Proceedings of the ACM SIGCOMM 2010 conference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The basic building block of ever larger data centers has shifted from a rack to a modular container with hundreds or even thousands of servers. Delivering scalable bandwidth among such containers is a challenge. A number of recent efforts promise full bisection bandwidth between all servers, though with significant cost, complexity, and power consumption. We present Helios, a hybrid electrical/optical switch architecture that can deliver significant reductions in the number of switching elements, cabling, cost, and power consumption relative to recently proposed data center network architectures. We explore architectural trade offs and challenges associated with realizing these benefits through the evaluation of a fully functional Helios prototype.