Buffer sharing in rendezvous programs

  • Authors:
  • Nalini Vasudevan;Stephen A. Edwards

  • Affiliations:
  • Department of Computer Science, Columbia University, New York, NY;Department of Computer Science, Columbia University, New York, NY

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems - Special section on the ACM IEEE international conference on formal methods and models for codesign (MEMOCODE) 2009
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Most compilers focus on optimizing performance, often at the expense of memory, but efficient memory use can be just as important in constrained environments such as embedded systems. This paper presents a memory reduction technique for rendezvous communication, which is applied to the deterministic concurrent programming language SHIM. It focuses on reducing memory consumption by sharing communication buffers among tasks. It determines pairs of buffers that can never be in use simultaneously and use a shared region of memory for each pair. The technique produces a static abstraction of a SHIM program's dynamic behavior, which is then analyzed to find buffers that are never occupied simultaneously. Experiments show the technique runs quickly on modest-sized programs and can sometimes reduce memory requirements by half.