Interconnect bundle sizing under discrete design rules

  • Authors:
  • Konstantin Moiseev;Avinoam Kolodny;Shmuel Wimer

  • Affiliations:
  • Technion-Israel Institute of Technology, Haifa, Israel;Technion-Israel Institute of Technology, Haifa, Israel;Technion-Israel Institute of Technology, Haifa, Israel

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems - Special section on the ACM IEEE international conference on formal methods and models for codesign (MEMOCODE) 2009
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The lithography used for 32 nm and smaller very large scale integrated process technologies restricts the admissible interconnect widths and spaces to a small set of discrete values with some interdependencies, so that traditional interconnect sizing by continuous-variable optimization techniques becomes impossible. We present a dynamic programming (DP) algorithm for simultaneous sizing and spacing of all wires in interconnect bundles, yielding the optimal power-delay tradeoff curve. DP algorithm sets the width and spacing of all interconnects simultaneously, thus finding the global optimum. The DP algorithm is generic and can handle a variety of power-delay objectives, such as total power or delay, or weighted sum of both, power-delay product, max delay, and alike. The algorithm consistently yields 6% dynamic power and 5% delay reduction for interconnect channels in industrial microprocessor blocks designed in 32 nm process technology, when applied as a post-layout optimization step to redistribute wires within interconnect channels of fixed width, without changing the area of the original layout.