Unconditionally secure first-price auction protocols using a multicomponent commitment scheme

  • Authors:
  • Mehrdad Nojoumian;Douglas R. Stinson

  • Affiliations:
  • David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada;David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

  • Venue:
  • ICICS'10 Proceedings of the 12th international conference on Information and communications security
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Due to the rapid growth of e-commerce technology, secure auction protocols have attracted much attention among researchers. The main reason for constructing sealed-bid auction protocols is the fact that losing bids can be used in future auctions and negotiations if they are not kept private. Our motivation is to develop a new commitment scheme to construct first-price auction protocols similar to proposed solutions in [18,17,19]. Our constructions are auctioneer-free and unconditionally secure whereas those protocols rely on computational assumptions and use auctioneers. As our contribution, we first propose a multicomponent commitment scheme, that is, a construction with multiple committers and verifiers. Consequently, three secure first-price auction protocols are proposed, each of which has its own properties. We also provide the security proof and the complexity analysis of proposed constructions.