Synthesis of memory-efficient "real-time" controllers for safety objectives

  • Authors:
  • Krishnendu Chatterjee;Vinayak S. Prabhu

  • Affiliations:
  • Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria;University of Porto, Porto, Portugal

  • Venue:
  • Proceedings of the 14th international conference on Hybrid systems: computation and control
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two-player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a linear (in the number of clocks) number of memory bits. Precisely, we show that for safety objectives, a memory of size (3 •|C| + lg(|C|+1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential bound. We also settle the open question of whether winning region controller strategies require memory for safety objectives by showing with an example the necessity of memory for region strategies to win for safety objectives.