Complexity dichotomy on partial grid recognition

  • Authors:
  • Vinícius G. P. de Sá;Guilherme D. da Fonseca;Raphael C. S. Machado;Celina M. H. de Figueiredo

  • Affiliations:
  • DCC/IM, Univ. Federal do Rio de Janeiro, Brazil;Univ. Federal do Estado do Rio de Janeiro, Brazil;Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Brazil;COPPE, Univ. Federal do Rio de Janeiro, Brazil

  • Venue:
  • Theoretical Computer Science
  • Year:
  • 2011

Quantified Score

Hi-index 5.23

Visualization

Abstract

Deciding whether a graph can be embedded in a grid using only unit-length edges is NP-complete, even when restricted to binary trees. However, it is not difficult to devise a number of graph classes for which the problem is polynomial, even trivial. A natural step, outstanding thus far, was to provide a broad classification of graphs that make for polynomial or NP-complete instances. We provide such a classification based on the set of allowed vertex degrees in the input graphs, yielding a full dichotomy on the complexity of the problem. As byproducts, the previous NP-completeness result for binary trees was strengthened to strictly binary trees, and the three-dimensional version of the problem was for the first time proven to be NP-complete. Our results were made possible by introducing the concepts of consistent orientations and robust gadgets, and by showing how the former allows NP-completeness proofs by local replacement even in the absence of the latter.